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Deriving average soliton equations with a perturbative method
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The method of multiple scales is applied to periodically amplified, lossy media described by either the
nonlinear Schrédinger (NLS) equation or the Korteweg—de Vries (KdV) equation. An existing result for
the NLS equation, derived in the context of nonlinear optical communications, is confirmed. The
method is then applied to the KdV equation and the result is confirmed numerically.
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Many physical systems can be described with integra-
ble nonlinear evolution equations [1]. The two most
prolific—as measured by number of applications—are
the nonlinear Schrodinger (NLS) equation and the
Korteweg—de Vries (KdV) equation (see Ref. [2], for ex-
ample). Each of these equations is applicable to systems
which are both weakly nonlinear and weakly dispersive.

The concept of periodic amplification of the NLS equa-
tion has recently been investigated with regard to long-
haul optical communication systems using the average or
guiding soliton approach [3-6]. Periodic amplification of
the KdV equation has not yet been addressed, but is po-
tentially applicable to a new electrical oscillator [7]. This
oscillator consists of a loop of lumped-element nonlinear
transmission line with a single amplifier to compensate
for losses. In Ref. [7], the oscillation modes were com-
pared with the periodic and soliton solutions of the Toda
lattice, but recent experiments have confirmed that the
KdV equation is a more appropriate description. Hence
the oscillator may be considered a periodically amplified
KdV system, and an average soliton approach is likely to
be valuable.

This paper considers the periodic amplification of both
KdV and NLS systems, in such a way that the basic per-
turbative nature of the problem is apparent. The NLS
case is revisited, using the Method of Multiple Scales
(MMS), before the KdV problem is approached with the
same technique. Naturally, the soliton is a salient feature
in both systems.

A typical optical fiber communication link consists of
an arrangement of glass fiber divided into equal sections
by optical amplifiers; a schematic is shown in Fig. 1.
Here, L is the normalized distance separating amplifiers
of gain u, and u(¢) is the input to the system. The prop-

agation between amplifiers—located at z =L, 2L,
3L, ..., — is described by a NLS equation,
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FIG. 1. Periodically amplified nonlinear transmission system.
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with a normalized loss coefficient " [8]. From a com-
munications perspective, the propagation of individual
pulses is of chief concern. It has been shown that pulses
can suffer large attenuations between amplifiers, yet still
behave like solitons of the homogeneous, lossless medium
(F=0,u=1) [3-6].

Mollenauer, Evangelides, and Haus [3] have given a
conceptually simple derivation of this effect by exploiting
the fact that the pulse shape does not change appreciably
between amplifiers. They show that the global behavior
of the system can be described with a homogeneous NLS
equation,
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where 4(1,z) is the wave form immediately following
each amplifier and p=[1—exp(—2I'L)]/(2T'L) is a fac-
tor to account for the attenuation between amplifiers.
The single soliton solution to Eq. (2) can propagate—
without serious distortion—over large distances and
many amplifier spans [3,4,6]. We present a more formal
derivation of Eq. (2), which will later be applied to
periodically amplified KdV systems.

If the distance between amplifiers is much less than
that over which significant nonlinear and dispersive
effects can occur, then these effects can be treated as per-
turbations [3]. Conversely, the attenuation is typically
very large: pulse power may change by a factor of 10 be-
tween amplifiers. Mollenauer, Evangelides, and Haus [3]
take the approach that the net effect is the approximate
preservation of the pulse shape — here, we consider the
perturbation problem directly.

The perturbative nature of the nonlinearity, and domi-
nance of the loss, can be made explicit by introducing a
small quantity, €<<1 and substituting z =€z’ and
I'=T"/e€ into Eq. (1), so that

2
ou ou 1; +|ul?u
at

vy =—il"u . (3)

1
2

Here, z is considered a “long” length scale and z’ as a
“short” length scale [9]. The fact that the problem has
been phrased as a perturbation problem, with two natural
scales, suggests that the MMS may be helpful [9,10]. The
MMS assumes that the solution can be expressed as a
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power series in e— with z and z’ treated as independent
variables, so that

u (t,z)=u0(t,z,z’)+eul(l,z,z’)+62u2(t,z,z’)+ e L (4)

This equation can be substituted into Eq. (3) and terms
collected at different orders of €. Collecting terms at
0 (€°), we have

auO _
3z

which can be solved to find

F'uo N (5)

uo=1u(t,z)exp(—I'z'), (6)

where 1 is an (as yet) arbitrary function of z and ¢t — but
not of z'. This is almost the solution Mollenauer,
Evangelides, and Haus assumed between amplifiers; the
authors remark that % varies with z on a large scale, but,
here, this fact is accounted for in the notation. The fol-
lowing analysis shows that #(z,z) is indeed the solution to
Eq. (2). At O(€!), we have
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The MMS enables an equation for #(t,z) to be found by
requiring that the perturbation series (4) is valid for
z'=0(e"!). Since it is clear that the solution u(t,z)
tends to zero—we have not yet considered the
amplification—then {ugy,u,,...,} must also tend to
zero. Therefore, so that u, tends to zero, we substitute
Eq. (6) into the right-hand side of Eq. (7) and set it to
zero, which yields
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The final step is to average Eq. (8) over one amplification
period—with respect to the short scale z’'— and, there-
fore, remove the dependence on z', i.e.,
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When this integral is evaluated, we reach the result
shown in Eq. (2). The average is valid when the gain is
precisely sufficient to compensate for the attenuation be-
tween amplifiers—i.e., from Eq. (6), u=exp(I'L). Mol-
lenauer, Evangelides, and Haus give Eq. (8) as

e 1%
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To obtain Eq. (2), this equation must also be integrated
over one amplifier span. To do this, the authors place
functions of % outside the integral of the right-hand side
of Eq. (10) (Z does not vary significantly between
amplifiers) but integrate the left-hand side (another func-
tion of % ) to obtain a differential term, A%Z. This difficulty
is avoided in Eq. (9) because the characteristic length
scales have been separated from the outset.

The key element in this development is that the dis-

tance between amplifiers is such that the pulse shaping
effects of dispersion and nonlinearity can be treated as
perturbations. Another famous equation which incorpo-
rates the effects of both dispersion and nonlinearity—and
supports solitons—is the Koretweg—de Vries (KdV)
equation [11]. To draw an interesting parallel between
two solitonic systems, and to introduce the possibility of
periodically amplified KdV systems, we show that the
lossy KdV equation can be treated in the same manner as
the NLS equation.

The system under consideration is that shown in Fig. 1,
except that the propagation between amplifiers is de-
scribed by the damped KdV equation,

du du | du
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A key difference between the NLS and KdV equations
is that the speed of propagation in the latter is amplitude
dependent—and hence will change as a pulse attenuates
between amplifiers. We apply the MMS method to this
system, to deduce an equation which describes the overall
system behavior. To make the nonlinear and dispersive
effects apparent as perturbations, we again set z =€z’ and
I’'=TI"/e and proceed exactly as before, which leads to
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and where n=[1—exp(—IL)]/(I'L). Equation (12)
plays the same role as Eq. (2) did previously —it describes
a pulse immediately following each amplifier.

Equation (12) can readily be tested by numerically
comparing its behavior to that of the actual system (Fig.
1). A straightforward approach is to assume that any
wave forms in Fig. 1 can be expressed with a t-periodic
Fourier series—nonperiodic cases can be catered for by
considering a sufficiently large period. This leads to an
infinite set of ordinary differential equations (ODE) which
can be truncated and solved with a standard ODE solver
[12]. By choosing suitable input wave forms, u,(¢), Eq.
(12) can be trialed against the actual behavior of the sys-
tem. To this end, we set the system details to be L =0.1,
r'=101n10~23.0, u=exp(I'L )=10, and ' ~2.56.

The single soliton solution to Eq. (12) is given by

ﬁ(t,z)=an_lsech2—‘£2g-(t—2az’) . (13)

An initial wave form corresponding to this solution
(a=m) is ug(t)=1(t,z=0)=sech?((/2)/*t). Figure 2
shows the evolution of this wave form when launched
into the system in Fig. 1 (solid lines). Each pair of solid
lines correspond to wave forms at the beginning and end
of individual sections of the lossy KdV medium, after O,
120, and 240 amplifiers have been passed. The solution
given by Eq. (13)—which is the solution to the average
soliton equation, equation (12)—is plotted, at discrete
points, with open circles. Clearly the solution to the
average KdV equation coincides with the simulated wave
forms which follow each amplifier, just as for the average
NLS equation. In fact, a stronger result can be shown by
considering another input wave form.
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FIG. 2. Evolution of a single, periodically amplified, pulse:
gain, u= 10, amplifier spacing, L =0.1. Each pair of solid lines
correspond to wave forms at the beginning and end of a single
amplification period L, as shown in Fig. 1, after 0, 120, and 240
amplifiers have been passed. Open circles correspond to the sol-
iton solution of the average soliton equation, Eq. (12).

By applying inverse scattering theory to Eq. (12), it can
be shown that uy(t)=1(t,z =0)=sech?((7/6)!/%*t) devel-
ops into exactly two solitons—of the form given in Eq.
(13)—with amplitudes 1 and % [13]. Figure 3 shows the
development corresponding to this initial condition when
launched into the periodically amplified KdV system;
clearly two solitons with correct amplitudes develop.
Again the solid pairs of lines correspond to wave forms at
the beginning and end of individual sections of the lossy
KdV medium, after 0, 120, and 240 amplifiers have been
passed. This result shows that Eq. (12) is not restricted to
predicting the behavior of single pulses. A similar result
has been shown recently, in the optical regime, where
second-order average solitons have been observed [14].

When these simulations are repeated with a much
larger distance between amplifiers, say L =1, Eq. (12) can
no longer be used to predict the global behavior of the
system. This is because the perturbation method be-
comes invalid when the nonlinearity and dispersion can-
not be considered as perturbations over an amplifier span,
L. In the optical regime the soliton period is a guide to
how small L must be [3] and Kelly [15] has shown how
an instability can develop if L is too large. We have not
determined a quantity corresponding to the soliton
period for the KdV case, but Fig. 3 gives a reasonable in-

60 O

FIG. 3. Evolution of two, periodically amplified, pulses. Sys-
tem parameters are the same as for Fig. 2. Each pair of lines
correspond to wave forms at the beginning and end of a single
amplification period, L, after 0, 120, and 240 amplifiers have
been passed. The amplitudes of the individual pulses agree with
the values predicted from inverse scattering theory, as applied
to the average soliton equation (12).

dication of the lengths over which nonlinearity and
dispersion can have an appreciable effect.

In conclusion, the MMS has been used to formalize the
result obtained by Mollenauer, Evangelides, and Haus
[3]. That nonlinearity and dispersion can be balanced, on
average, for the periodically amplified NLS equation is a
surprising result—perhaps more so for the KdV case.
Whereas both nonlinearity and dispersion effect a NLS
pulse only on a large scale, the speed of a KdV pulse is
directly related to its amplitude. Thus, there is an attri-
bute of the KdV pulse which can vary significantly over
one amplification period. Heuristically speaking, an
average description is still possible because the pulse trav-
els faster at the beginning of the amplification period and
slower near the end, resulting in the correct average
speed. If this fact is accepted a priori then Mollenauer,
Evangelides, and Haus argument can be equally well ap-
plied to the periodically amplified KdV system by disre-
garding the dependence of the pulse’s speed on its ampli-
tude.
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